The Genetic Rescue Foundation Blog

Rewriting the Code of Life

Early on an unusually blustery day in June, Kevin Esvelt climbed aboard a ferry at Woods Hole, bound for Nantucket Island. Esvelt, an assistant professor of biological engineering at the Massachusetts Institute of Technology, was on his way to present to local health officials a plan for ridding the island of one of its most persistent problems: Lyme disease. He had been up for much of the night working on his slides, and the fatigue showed. He had misaligned the buttons on his gray pin-striped shirt, and the rings around his deep-blue eyes made him look like a sandy-haired raccoon.

Esvelt, who is thirty-four, directs the “sculpting evolution” group at M.I.T., where he and his colleagues are attempting to design molecular tools capable of fundamentally altering the natural world. If the residents of Nantucket agree, Esvelt intends to use those tools to rewrite the DNA of white-footed mice to make them immune to the bacteria that cause Lyme and other tick-borne diseases. He and his team would breed the mice in the laboratory and then, as an initial experiment, release them on an uninhabited island. If the number of infected ticks begins to plummet, he would seek permission to repeat the process on Nantucket and on nearby Martha’s Vineyard.

Read the full article

Gene editing starts to save lives as human trials get under way

Gene editing involves altering or disabling existing genes, which used to be extremely difficult. It took many years to develop the gene-editing tool that saved Layla, but thanks to a revolutionary method known as CRISPR, this can now be done in just weeks.

In fact, CRISPR works so well that the first human trial involving the method has already begun. In China, it is being used to disable a gene called PD-1 in immune cells taken from individuals with cancer. The edited cells are then injected back into each person’s body. PD-1 codes for an “off switch” on the surface of immune cells, and many cancers evolve the ability to thwart immune attacks by flipping the PD-1 switch to “off”. On the edited immune cells there is no switch for cancer cells to flip.

Read the full article

Reckless driving?

By exploiting selfish elements, geneticists can now fit a gene drive to practically any DNA sequence (assuming they have a map of the target creature’s genome), effectively directing that species’ genetic future.

Read the full article

The Case for Bringing Back the Passenger Pigeon

North Dakota is not known for its pigeons. Or forests, for that matter. The state bird is the western meadowlark, a mellifluous yellow songbird often seen singing on fence posts. Such posts substitute for trees in much of North Dakota. The state is primarily covered in what was once short-grass prairie but is now mostly farms embedded in a human-made grassland, exceptions being the Badlands and a swath of boreal forest in the far north near Canada.

Yet it was near Williston, the heart of western North Dakota’s new boom-and-bust oil patch, that Ben Novak first fell in love with Ectopistes migratorius—the passenger pigeon, a bird that rarely graced this region, if ever.

Read the full article

CRISPR toolbox expanded by protein that cuts RNA in two distinct ways

UC Berkeley biochemist Jennifer Doudna, molecular biologist Robert Tijan and a team of researchers have expanded the role of the newly discovered CRISPR protein C2c2 that targets RNA instead of DNA.

C2c2 has been described as an RNA-guided RNA-cutting enzyme; however, a full understanding of how this protein acts to cleave RNA was lacking. In a paper published today in Nature titled “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection,” the researchers were able to show that C2c2 has not one, as previously thought, but two distinct RNA cutting activities that in concert can be harnessed for robust RNA detection and degradation.

Read the full article

The beginning of the end for predators?

The government has announced its intention to make New Zealand predator-free by 2050. Prime Minister John Key said rats, possums and stoats kill 25 million native birds a year. He said the introduced pests also threatened the country’s economy and primary sector with a total cost of $3.3 billion a year. More than 7000 hectares of the New Zealand mainland as well as more than 150 offshore islands were now completely free of predators, Mr Key said. In addition a further 1 million hectares of conservation land were under sustained predator control. The government will invest $28 million in a new joint venture company called Predator Free New Zealand Ltd.

Read the full article

A Guide To Gene Drives

In 2012, Jennifer Dounda and her colleague Emmanuelle Charpentier published an article showing how a specific gene drive, known as CRISPR-Cas9, can be used to “drive” certain genetic properties through wild populations with astonishing ease. Gene drives are natural genetic systems that allow certain genes to bypass the rules of inheritance and thereby make themselves more likely to be passed along. The CRISPR system, modeled after a bacterial immune system, can be used to target and cut out specific sections of DNA (genes) and replace it with another desired sequence. While gene drives have been known about for a long time, the CRISPR system is a landmark discovery because for the first time geneticists have a tool that allows them to easily manipulate the genetic composition of wild populations.

Read the full article

We can now alter the genomes of invasive species to slow their advance. Should we?

It’s a familiar story on islands all over the world where rodents — prolific feeders and breeders — are a leading cause of extinctions. Massive efforts have been undertaken to kill invasive rodents and usually involve broadcasting rodenticide; other options, like trapping mice or releasing biological controls in the form of snakes or cats, have been ineffective.

Read the full article

Rare Dinosaur-Era Bird Wings Found Trapped in Amber

Bone, tissue, and feathers show the almost 100-million-year-old wings are remarkably similar to those on modern birds.

wings

Read the full article

Blogging cells tell their stories using CRISPR gene editing

What would our cells say if they could blog? We’ll soon know – the CRISPR gene editing technique has been adapted to make cells keep a log of what happens to them, written inside their own DNA.

Such CRISPR-based logging could have a huge range of uses, from smart cells that monitor our health from within, to helping us understand exactly how our bodies develop and grow.

Read the full article

%d bloggers like this: